访谈发言
李德仁:21世纪遥感与GIS的发展
随着计算机技术、空间技术和信息技术的发展,人类实现了从空中和太空来观测和感知人类赖以生存的地球的理想,并能将所感知到的结果通过计算机网络在全球流通,为人类的生存、繁荣和可持续发展服务。在20世纪后半叶,遥感和地理信息系统作为一门新兴的科学和技术,迅速地成长起来。
一、遥感技术的主要发展趋势
1.航空航天遥感传感器数据获取技术趋向三多(多平台、多传感器、多角度)和三高(高空间分辨率、高光谱分辨率和高时相分辨率)
从空中和太空观测地球获取影像是20世纪的重大成果之一,短短几十年,遥感数据获取手段迅猛发展。遥感平台有地球同步轨道卫星(35000km)、太阳同步卫星(600-1000km)、太空飞船(200-300km)、航天飞机(240-350km)、探空火箭(200-1000km),并且还有高、中、低空飞机、升空气球、无人飞机等;传感器有框幅式光学相机、缝隙、全景相机、光机扫描仪、光电扫描仪、CCD线阵、面阵扫描仪、微波散射计雷达测高仪、激光扫描仪和合成孔径雷达等,它们几乎覆盖了可透过大气窗口的所有电磁波段。三行CCD阵列可以同时得到3个角度的扫描成像,EOS Terra卫星上的MISR可同时从9个角度对地成像。
卫星遥感的空间分辨率从Ikonos Ⅱ的1m,进一步提高到Quckbird(快鸟)的0.62m,高光谱分辨率已达到5-6nm,500-600个波段。在轨的美国EO-1高光谱遥感卫星,具有220个波段,EOS AM-1(Terra)和EOS PM-1(Aqua)卫星上的MODIS具有36个波段的中等分辨率成像光谱仪。时间分辨率的提高主要依赖于小卫星技术的发展,通过发射地球同步轨道卫星和合理分布的小卫星星座,以及传感器的大角度倾斜,可以以1-3d的周期获得感兴趣地区的遥感影像。由于具有全天候、全天时的特点,以及用INSAR和D-INSAR,特别是双天线INSAR进行高精度三位地形及其变化测定的可能性,SAR雷达卫星为全世界各国所普遍关注。例如,美国宇航局的长远计划是要发射一系列太阳同步和地球同步的长波SAR,美国国防部则要发射一系列短波SAR,实现干涉重访问间隔为8d、3d和1d,空间分辨率分别为20m、5m和2m。我国在机载和星载SAR传感器及其应用研究方面正在形成体系。"十五"期间,我国将全方位地推进遥感数据获取的手段,形成自主的高分辨率资源卫星、雷达卫星、测图卫星和对环境与灾害进行实时监测的小卫星群。
2. 航空航天遥感对地定位趋向于不依赖地面控制
确定影像目标的实地位置(三维坐标),解决影像目标在哪儿(Where)是摄影测量与遥感的主要任务之一。在已成功用于生产的全自动化GPS空中三角测量的基础上,利用DGPS和INS惯性导航系统的组合,可形成航空/航天影像传感器的位置与姿态的自动测量和稳定装置(POS),从而可实现定点摄影成像和无地面控制的高精度对地直接定位。在航空摄影条件下的精度可达到dm级,在卫星遥感的条件下,其精度可达到m级。该技术的推广应用,将改变目前摄影测量和遥感的作业流程,从而实现实时测图和实时数据库更新。若与高精度激光扫描仪集成,可实现实时三维测量(LIDAR),自动生成数字表面模型(DSM),并可推算出数字高程模型(DEM)。
美国NASA在1994年和1997年两次将航天激光测高仪(SLA)安装在航天飞机上,企图建立基于SLA的全球控制点数据库,激光点大小为100m,间隔为750m,每秒10个脉冲;随后又提出了地学激光测高系统(GLAS)计划,已于2002年12月19日将该卫星IICESat(cloud
and land elevation satellite)发射上天。该卫星装有激光测距系统、GPS接收机和恒星跟踪姿态测定系统。GLAS发射近红外光(1064nm)和可见绿光(532nm)的短脉冲(4ns)。激光脉冲频率为40次/s,激光点大小实地为70m,间隔为170m,其高程精度要明显高于SRTM,可望达到m级。他们的下一步计划是要在2015年之前使星载LIDAR的激光测高精度达到dm和cm级。
法国利用设在全球的54个站点向卫星发射信号,通过测定多普勒频移,以精确解求卫星的空间坐标,具有极高的精度。测定距地球1300km的Topex/Poseidon卫星的高度,精度达到±3cm。用来测定SPOT 4卫星的轨道,3个坐标方向达到±5cm精度,对于SPOT 5和Envisat,可望达到±1m精度。若忽略SPOT 5传感器的角元素,直接进行无地面控制的正射像片制作,精度可达到±15m,完全可以满足国家安全和西部开发的需求。
3. 摄影测量与遥感数据的计算机处理更趋向自动化和智能化
从影像数据中自动提取地物目标,解决它的属性和语义(What)是摄影测量与遥感的另一大任务。在已取得影像匹配成果的基础上,影像目标的自动识别技术主要集中在影像融合技术,基于统计和基于结构的目标识别与分类,处理的对象既包括高分辨率影像,也更加注重高光谱影像。随着遥感数据量的增大,数据融合和信息融合技术逐渐成熟。压缩倍率高、速度快的影像数据压缩方法也已商业化。我国学者在这些方面取得了不少可喜的成果。
4. 利用多时像影像数据自动发现地表覆盖的变化趋向实时化
利用遥感影像自动进行变化监测(What change)关系到我国的经济建设和国防建设。过去人工方法投入大,周期长。随着各类空间数据库的建立和大量新的影像数据源的出现,实时自动化监测已成为研究的一个热点。
自动变化监测研究包括利用新旧影像(DOM)的对比、新影像与旧数字地图(DLS)的对比来自动发现变化和更新数据库。目前的变化监测是先将新影像与旧影像(或数字地图)进行配准,然后再提取变化目标,这在精度、速度与自动化处理方面都有不足之处。笔者提出了把配准与变化监测同步的整体处理[1]。最理想的方法是将影像目标三维重建与变化监测一起进行,实现三维变化监测和自动更新。进一步的发展则是利用智能传感器,将数据处理在轨完成,发送回来的直接为信息,而不一定为影像数据。
5.摄影测量与遥感在构建“数字地球”、“数字中国”、“数字省市”和“数字文化遗产”中正在发挥愈来愈大的作用
“数字地球”概念是在全球信息化浪潮推进下形成的。1999年12月在北京成功地召开了第一届国际"数字地球"大会后,我国正积极推进"数字中国"和"数字省市"的建设,2001年国家测绘局完成了构建"数字中国"地理空间基础框架的总体战略研究。在已完成1∶100万和1∶25万全国空间数据库的基础上,2001年全国各省市测绘局开始1∶5万空间数据库的建库工作。在这个数据量达11TB的巨型数据库中,摄影测量与遥感将用来建设DOM(数字正射影像)、DEM(数字高程模型)、DLG(数字线划图)和CP(控制点数据库)。如果要建立全国1m分辨率影像数据库,其数据量将达到60TB。如果整个"数字地球"均达到1m分辨率,其数据量之大可想而知。本世纪内可望建成这一分辨率的数字地球。
“数字文化遗产”是目前联合国和许多国家关心的一个问题,涉及到近景成像、计算机视觉和虚拟现实技术。在近景成像和近景三位量测方面,有室内各种三维激光扫描与成像仪器,还可以直接由视频摄像机的系列图像获取目标场三维重建信息。它们所获取的数据经过计算机自动处理后,可以在虚拟现实技术支持下形成文化遗迹的三维仿真,而且可以按照时间序列,将历史文化在时间隧道中再现,对文化遗产保护、复原与研究具有重要意义。
6.全定量化遥感方法将走向实用
从遥感科学的本质讲,通过对地球表层(包括岩石圈、水圈、大气圈和生物圈4大圈层)的遥感,其目的是为了获得有关地物目标的几何与物理特性,所以需要通过全定量化遥感方法进行反演。几何方程式是有显式表示的数学方程,而物理方程一直是隐式。目前的遥感解译与目标识别并没有通过物理方程反演,而是采用了基于灰度或加上一定知识的统计、结构和纹理的影像分析方法。但随着对成像机理、地物波谱反射特征、大气模型、气溶胶的研究深入和数据积累,多角度、多传感器、高光谱及雷达卫星遥感技术的成熟,相信在21世纪,估计几何与物理方程式的全定量化遥感方法将逐步由理论研究走向实用化,遥感基础理论研究将迈上新的台阶。只有实现了遥感定量化,才可能真正实现自动化和实时化。
二、 GIS技术的主要发展趋势
1.空间数据库趋向图形、影像和DEM三库一体化和面向对象
GIS发展曾经历过栅格、矢量两个不同数据结构发展阶段,目前随着高分辨率卫星遥感数据的飞快增长和数字地球、数码城市的需求,形成了面向对象的数据模型和三库(图形矢量库、影像栅格库和DEM格网库)一体化的数据结构。这样的数据库结构使GIS的发展更加趋向自然化、逼真化,更加贴近用户。以面向应用的GIS软件为前台,以大型关系数据库(Oracle 8i,9i等)为后台数据库管理,成为当前GIS技术的主流趋势。
2. 空间数据表达趋向多比例尺、多尺度、动态多位和实时三维可视化
在传统的GIS中,空间数据是以二维形式存储并挂接相应的属性数据。目前,空间数据表达的趋势是基于金字塔和LOD(level of detail)技术的多比例尺空间数据库,在不同尺度表示时可自动显示出相应比例尺或相应分辨率的数据,多比例尺数据集的跨度要比传统地图的比例尺大,在显示不同比例尺数据时,可采用LOD或地图综合技术。真三维GIS的空间数据要存储三维坐标。动态GIS在土地变更调查、土地覆盖变化监测中已有较好的应用,真四维的时空GIS将有望从理论研究转入实用阶段。基于三库一体化的时空3D可视化技术发展势头迅猛,已能再PC机上实现GIS环境下的三维建筑物室外室内漫游、信息查询、空间分析、剖面分析和阴影分析等,基于虚拟现实技术的真三维GIS将使人们在现实空间外,可以同时拥有一个Cyber空间。
3. 空间分析和辅助决策智能化需要利用数据挖掘方法从空间数据库和属性数据库中发现更多的有用知识
GIS是以应用导向的空间信息技术,空间分析与辅助决策支持是GIS的高水平应用,它需要基于知识的智能系统。知识的获取是专家系统中最困难的任务。随着各种类型数据库的建立,从数据库中挖掘知识成为当今计算机界一个非常引人注目的课题。从GIS空间数据库中发现的知识可以有效的支持遥感图像解译,以解决"同物异谱"和"同谱异物"的问题。反过来,从属性数据库中挖掘的知识又具有优化资源配置等一些列空间分析的功能[3]。尽管数据挖掘和知识发现这一命题仍处于理论研究阶段,但随着数据库的快速增大和对数据挖掘工具的深入研究,其应用前景是不可估量的。
4.通过Web服务器和WAP服务器的互联网和移动GIS将推进联邦数据库和互操作的研究及地学信息服务事业
随着计算机通讯网络(包括有线和无线网)的大容量和高速化,GIS已成为在网络上的分布式异构系统。许多不同单位、不同组织维护管理的既独立又互联互用的联邦数据库,将可提供全社会各行各业的应用需要。因此,联邦数据库和互操作问题成为当前国际GIS联合研究的一个热点。互操作意味着数据库中数据的直接共享,GIS规律功能模块的互操作与共享,以及多点之间的相同工作,这方面的研究已显示出明显的成效。未来的GIS用户将可能在网络上缴纳为其需要所选用数据和软件功能模块的使用费,而不必购买这个数据库和整套的GIS软硬件,这些成果产生的直接效果是GIS应用将走向地学信息服务。
目前已兴起的LBS和MLS,即基于位置的服务和移动定位服务,突出地反映了这种变化趋势。它引起的革命性变化使GIS将走出研究院所和政府机关,成为全社会人人具备的信息服务工具。我国目前已有2亿个手机用户,若每人每月为MLS支付10元费用,全国一年的产值将达到240亿。可以预测在不久的将来,地学信息将能随时随地为任何人和任何事情进行4A服务。
5. 地理信息科学的研究有望在本世纪形成较完整的理论框架体系
笔者曾扼要地叙述了地球空间信息科学的7大理论问题[4]:(1)地球空间信息的基准,包括几何基准、物理基准和时间基准;(2)地球空间信息标准,包括空间数据采集、存储与交换标准、空间数据精度与质量标准、空间信息的分类与代码标准、空间信息的安全、保密及技术服务标准以及元数据标准等;(3)地球空间信息的时空变化理论,包括时空变化发现的方法和对时空变化特征的和规律的研究;(4)地球空间信息的认知,主要通过各目标各要素的位置、结构形态、相互关联等从静态上的形态分析、发生上的成因分析、动态上的过程分析、演化上的力学分析以及时态上的演化分析达到对地球空间的客观认知;(5)地球空间信息的不确定性,包括类型的不确定性、空间位置的不确定性、空间关系的不确定性、逻辑的不一致性和信息的不完备性;(6)地球空间信息的解译与反演,包括定性解译和定量反演,贯穿在信息获取、信息处理和认知过程中;(7)地球空间信息的表达与可视化,涉及到空间数据库多分辨率表示、数字地图自动综合、图形可视化、动态仿真和虚拟现实等。目前,这些方面的研究对建立完备的理论尚嫌不足,需要在今后加强这方面的基础研究。
三、结语
遥感与GIS在20世纪出现,在21世纪不仅将形成自身的理论体系和技术体系,而且将形成天地一体化的空间信息服务产业,为国民经济建设、国家安全、社会可持续发展和提高人民生活质量做出愈来愈大的贡献。